pwo

Insights into genetic susceptibility to melanoma by gene panel testing: potential pathogenic variants in ACD, ATM, BAP1, and POT1

Lorenza Pastorino ^{1,2,§}, Virginia Andreotti^{1,2,§}, Bruna Dalmasso^{1,2§}, Irene Vanni^{1,2}, Giulia Ciccarese^{1,2}, Maria Antonietta Pizzichetta⁵, Giovanni Ponti⁶, Maria Grazia Tibiletti⁷, Elena Sala⁸, Maurizio Genuardi^{9,10}, Pietro Chiurazzi^{9,10}, Gabriele Maccanti¹¹, Siranoush Manoukian¹², Serena Sestini¹³, Rita Danesi¹⁴, Valentina Zampiga¹⁵, Roberta La Starza¹⁶, Ignazio Stanganelli¹⁷, Alberto Ballestrero^{2,18}, Luca Mastracci^{2,19}, Federica Grillo^{,2,19}, Stefania Sciallero²⁰, Federica Cecchi²¹, Enrica Teresa Tanda^{,21}, Francesco Spagnolo²¹, Paola Queirolo²¹, Italian Melanoma Intergroup (IMI), Alisa M. Goldstein²², William Bruno^{1,2§} and Paola Ghiorzo^{1,2§}.

¹Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy; ³Unit of Medical Oncology, Department of Oncology, Papa Giovanni XXIII Hospital, Bergamo, Italy; ⁴Divisione di Chirurgia del Melanoma, IRCCS Fondazione Istituto Nazionale per lo studio e la cura dei tumori Milano; ⁵Division of Oncology B, CRO Aviano National Cancer Institute, Aviano, Italy; ⁶Department of Pathology, ASST Sette Laghi, Varese, Italy;⁸Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, Monza, Italy;¹⁰ Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy; ¹¹UO Dermatologia P.O. Misericordia, Grosseto, Italy;¹² Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy;¹³ Plastic & Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit Tuscan Tumour Institute (ITT), Santa Maria Annunziata Hospital, Firenze, Italy;¹⁴ Romagna Cancer, Meldola, Italy;¹⁵ Biosciences Laboratory, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, Meldola, Italy;¹⁵ Biosciences Laboratory, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, Meldola and Department of Dermatology, University of Parma, Parma Italy; ¹⁶Hematology and Bone Marrow Transplantation Unit, CREO, University of Perugia, Italy; ¹⁷ Skin Cancer Unit, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, Meldola, Italy; ¹⁸ Department of Internal Medicine, Università degli Studi di Genova, Genova, Italy; ¹⁹Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, Italy; ²¹IRCCS Ospedale Policlinico San Martino, Medical Oncology 1, Genova, Italy; ²² Clinical Genetics and Diagnostic Sciences, Università degli Studi di Genova, Italy; ²² Clinical Genetics and Diagnostic Sciences, Università degli Studi di Genova, Italy; ²⁴IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, Genova, Italy; ²⁰IRCCS Ospedale Policlinico San Martino, Unit of Medical Oscieta San Martino, Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.

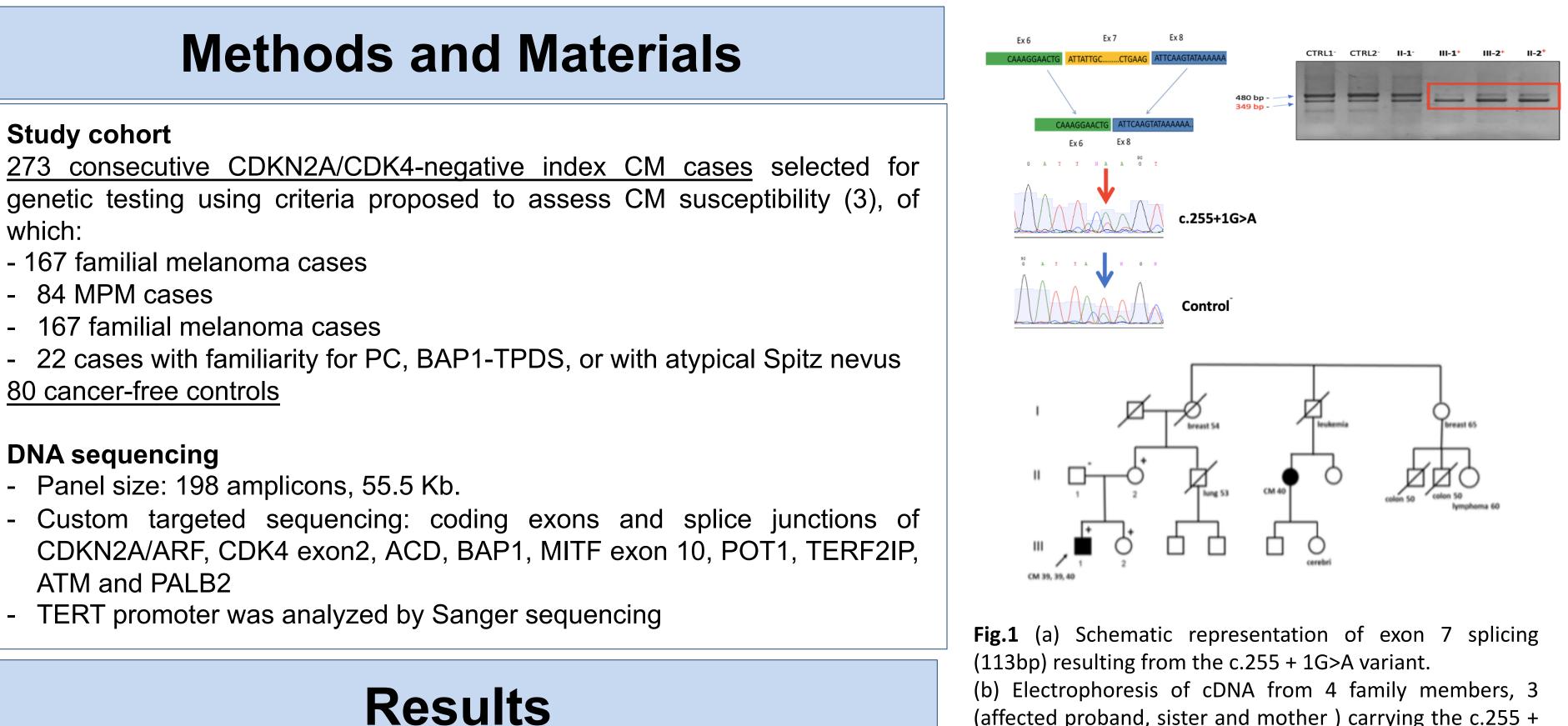
Objective

- Until six years ago, CDKN2A/ARF and *CDK4* were the only known melanoma-predisposition genes tested in clinical practice (20-45%) pos familial CM cases [1] and 11%-19% of multiple primary melanomas (MPM) [2]), but, recently, novel rare high-risk variants have been identified in BAP1, POT1, ACD, TERF2IP) and TERT promoter.
- We performed germline sequencing of CM patients through a multigene panel containing all established and two selected candidate* CM susceptibility genes, with the following aims:
 - to validate this comprehensive gene panel in high-risk melanoma cases
 - to evaluate the potential impact of this panel in the clinical practice in terms of increased diagnostic yield and of interpretational challenges of novel variants.

*ATM and PALB2. They were included under the hypothesis the aggregation of pancreatic cancer (PC) in our CM families could be partly ascribed to those two genes

Study cohort

which:


- 167 familial melanoma cases
- 84 MPM cases
- 167 familial melanoma cases

80 cancer-free controls

DNA sequencing

- Panel size: 198 amplicons, 55.5 Kb.
- ATM and PALB2
- TERT promoter was analyzed by Sanger sequencing

- variant found in this cohort is described in Figure 1
- **TERF2IP**
- (Fig2)

Out of 273 probands who underwent gene panel testing, we identified: - 16 (5.9%) pathogenetic (P) or likely pathogenic (LP) variants in the established CM susceptibility genes BAP1 (2.2%; n=6), POT1 (0.7%; n=2), ACD (0.37%; n=1) and MITF (2.6%; n=7). A novel POT1 splice - 8 variants of uncertain significance (VUS): 1 in BAP1, 6 in POT1, and 1 in

- 4 deleterious variants and 5 potentially deleterious variants (3.3%) as well as 6 rare VUS in ATM, whereas no rare variants were found in PALB2.

(affected proband, sister and mother) carrying the c.255 + 1G>A variant, the non-carrier father from the unaffected branch of the family, and two healthy controls (CTRL-). The shortest of the two transcripts, resulting from the skipping of exon 7, is overrepresented in carriers compared to noncarriers. (c) cDNA sequencing confirmed that the mutant allele produced the shorter isoform, with skipping of exon 7, in a higher proportion of the transcript in carriers vs non carriers. The blu arrow indicates the lower relative abundance of the spliced isoform (ex 6-8) in noncarriers vs carriers (red arrow). (d) Pedigree diagram of the family carrying the c.255 +1G>A variant. Dark symbo=CM. Cancer type and age at diagnosis are indicated under each symbol. Arrow= proband. +=carrier, -=non-carrier.

Conclusion

P106

To our knowledge, this is the first study to report a high percentage of deleterious ATM variants in melanoma families (3.3%, plus 2.2% rare VUS), and has led to an ongoing multicenter international collaboration to define the role of ATM in CM susceptibility.

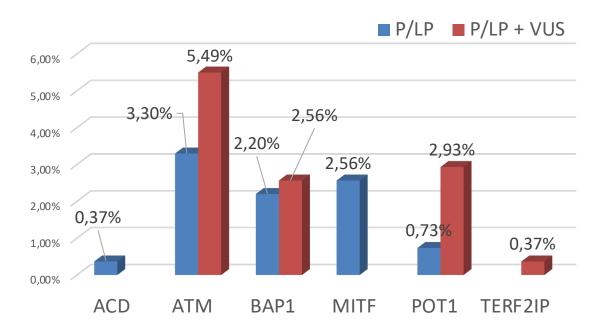


Fig.2 Graph showing the percentage of pathogenic and likely pathogenic (P/LP) and VUS variants in each gene

References

1. Aoude, L.G.et al.Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res. 2015, 28, 148–160. 2. Bruno, W.et al., Multiple primary melanomas (MPMs) and criteria for genetic assessment: MultiMEL, a multicenter study of the Italian

Melanoma Intergroup. J. Am. Acad. Dermatol. 2016, 74, 325-332. 3.Leachman, S.A.; Lucero, O.M.; Sampson, J.E.; Cassidy, P.; Bruno, W.; Queirolo, P.; Ghiorzo, P. Identification, genetic testing, and management of hereditary melanoma. 2017, 1–14.